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ABSTRACT 
 

Non-satellite-based technologies are important for indoor localization due to 

the difficulties that satellite-based technologies such as the Global 

Positioning System (GPS) experience operating in such areas, e.g. low 

received signal power and low visibility of satellites. The most popular 

positioning method indoors is fingerprinting, which is a technique that 

records vectors of received signal strength (RSS) from several transmitters at 

some reference points (RPs) into a database, and later for localization of the 

user, the users device records its own vector of signal strength and matches it 

against the pre-recorded database of vectors by applying pattern matching 

algorithms. In this work we deal with deterministic fingerprinting algorithms 

based on the nearest neighbour (NN) matching algorithm. For this purpose, 

similarity measurements between the recorded RSSs and the new 

measurements are necessary, which can be calculated using various signal 

distances. Manhattan and Euclidean distances are the most common. In this 

paper, however, responding to the lack of research on the performance of 

utilizing the other signal distances on indoor positioning, nine different types 

of similarity measures are investigated. The examined distances are 

Manhattan, Euclidean, Chebyshev, Canberra, Cosine, Sorensen, Helinger, 

Chi-square, and Jeffrey. For this purpose, we employ an analytical 

framework for indoor positioning systems that enables us to analyse the 

accuracy performance of the system based on the probability of error, here 

defined as the chance of the distance between the RSS of the test point (TP) 

and the correct location fingerprint being larger than the distance between 

the RSS at the TP and an incorrect location fingerprint. Such similarity 

measures are compared in terms of the probabilities of error and the distance 

errors that they provide so that we can identify which provides least error. 

The results are presented for both a simulated environment and real 

experiments using Wi-Fi and FM (Frequency Modulation) signals. 
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1. INTRODUCTION 
 

Indoor positioning has become highly important because of the difficulties that satellite-based 

technologies such as the Global Positioning System (GPS) experience operating in such areas, 

e.g. low received signal power and low visibility of satellites. Non-satellite-based 

technologies, therefore, are important for indoor localization. Utilising signals of opportunity 

is a viable alternative to GPS due to much higher power levels and wider coverage in indoor 

environments (Raquet and Martin, 2008). 
 

Many studies have effectively employed wireless networks for indoor localization based on 

the Received Signal Strength (RSS)-based location fingerprinting technique (Li et al., 2007). 

Fingerprinting is capable of alleviating some of the problems caused by multipath and Non-

Line of Sight (NLOS) propagation in an indoor environment (Li, 2006). Fingerprinting 

requires a survey of Radio Frequency (RF) signal strength vectors to be made ahead of the 

system’s use for localization. Fingerprinting has two stages: “training” and “positioning”. It 

stores the location dependent characteristics of a signal recorded at Reference Points (RPs) in 

a database in the training stage, and in the positioning stage, pattern matching algorithms are 

applied to find the best match between the fingerprint of the user and the database, and 

eventually estimates the position of the user based on good matches. 

 

The matching methods can be implemented in various ways from a mathematical point of 

view. They are based on deterministic (Bahl and Padmanabhan, 2000) and probabilistic (Roos 

et al., 2002) algorithms both of which have been used in Wi-Fi (Li et al., 2007), Frequency 

Modulated (FM) radio (Moghtadaiee et al., 2011a), and mobile phone networks (Li et al, 

2005). The measurements of the RSS values at one location can vary considerably, but in 

deterministic location fingerprinting the average value is stored for the post processing and 

position determination stage. Nearest Neighbour (NN), K-Nearest Neighbour (KNN), and K-

Weighted Nearest Neighbour (KWNN) methods (Bahl and Padmanabhan, 2000) are the most 

popular matching methods based on deterministic analysis of fingerprinting. 

 

In this work we deal with the simple and popular NN deterministic method which has been 

broadly used in fingerprinting. In this algorithm, the position of the nearest RP is considered 

as the estimated position of the user. In order to select this nearest RP, the signal distance 

measures between the recorded RSS fingerprints at the test point (TP) and the RPs (in the 

database) are necessary, which can be calculated using various signal distances. Most authors 

dealing with fingerprinting algorithms use Euclidean distance (Kaemarungsi and 

Krishnamurthy, 2004), (Lin et al., 2009), (Kjærgaard, 2011). However, there is a lack of 

research on reasons for choosing one distance measure over the others and no analytical 

criteria have been proposed for choosing the best. Therefore, without having proper 

information about the effect of using a distance measure, unknown performance errors can 

result. 

 

This paper develops an analytical framework for indoor positioning systems that enables us to 

analyse the accuracy performance of fingerprinting. By employing this framework, we 

investigate different signal distances so that we can identify which provides least distance 

error. We will show that results from the simulation agree with the real experiments results. 

 



 

 

 

The rest of the paper is organized as follows. Section 2 presents the related work on the 

analytical model for indoor fingerprinting systems and on utilising different cases of 

Minkowski distance between fingerprints. An overview of the indoor location fingerprinting 

system model and the signal distances used are described in section 3. In section 4 the 

probability of returning the wrong position using the NN method is explained. The analytical 

model of indoor location fingerprinting is employed in section 5 and the Monte Carlo 

simulation is also carried out to obtain numerical results. The relationship between the 

probability of error (POE) in positioning and mean distance error (MDE) is also analysed. 

Section 6 shows the results of a real experiment in both Wi-Fi and FM positioning systems. 

Finally, the conclusions of the work are discussed in section 7. 

 

 

2. RELATED WORK 
 

There are limited studies that partly analyse and estimate the accuracy and precision 

performance of indoor positioning techniques based on location fingerprinting (Kaemarungsi 

and Krishnamurthy, 2004), (Wallbaum, 2007). The authors in (Kaemarungsi and 

Krishnamurthy, 2004) introduce a model for predicting performance of an indoor positioning 

system based on the probability of correct positioning which is the chance of the distance 

between the RSS at TP and the correct location fingerprint being less than the distance 

between the RSS at TP and the wrong location fingerprint. However, their work is based on 

Euclidean distance only. They also do not discuss the relationship between the probability of 

correct positioning and distance error. 

 

Various distance measures have been introduced (Vorst and Zell, 2010), (Machaj and Brida, 

2011). However, most researchers dealing with fingerprinting algorithms limit their work to a 

single distance measure between TP measurements and RP fingerprints stored in a database, 

such as Manhattan distance (Li et al., 2007), (Ching et al., 2010), (Kjærgaard, 2007), 

Euclidean distance (Kaemarungsi and Krishnamurthy, 2004), (Lin et al., 2009), (Kjærgaard, 

2011). Furthermore, although the significant part of fingerprinting is the matching technique, 

no criteria have been proposed for choosing the optimal distance measures. Regarding 

Manhattan and Euclidean distances, authors in (Machaj and Brida, 2011) compare two 

scenarios of the same and different indoor environment conditions for training and positioning 

stages of fingerprinting. Their simulation results show that the lowest error is provided by 

Manhattan and Euclidean in the same and different environment conditions scenarios 

respectively, but the difference is not significant. This work, however, highlights a framework 

that helps utilize the most suitable distance for location fingerprinting. The simulation and 

experimental results are also discussed. 

 

 

3. INDOOR LOCATION FINGERPRINTING 
 

In this section we describe the modified preliminary model of indoor location fingerprinting 

described in (Kaemarungsi and Krishnamurthy, 2004). 

 

 
3.1 System Model 

 

It is assumed there are P APs and R RPs with known locations in a 2D area. The whole area 

here is divided into R small regions where the centre of each region is a RP. Fingerprinting is 



 

 

 

carried out for each RP, and a fingerprint vector which consists of the statistical mean of the 

RSS from each AP is saved in a database. We denote the mean RSS vector of the rth RP by 

   , and the fingerprint vector associated with that is     
      

     
       

       
  , where    

  is 

the mean of RSS random variables measured at    from    . Some small regions can be left 

out as they do not contain any RP. 

 

A TP can be inside any of the small regions in the network. Based on the position of the TP, 

its nearest RP is denoted by     and other RPs are denoted by                       . 
Figure 1 shows the system model described in this section. To find the position of the TP, we 

first measure the TP vector which consists of samples of the RSS random variables from each 

AP. The TP vector is denoted as                    , where    contains the RSS random 

variables measured at TP from    . 

 

 

 

Figure 1. The system model geometry including the RPs and the TP. 

 

 
3.2 Radio Channel Model 

 

Due to the complexity of signal propagation in indoor environments, and its dependency on 

various environmental parameters such as multipath, refraction, blockage, and noise, deriving 

a unique and fixed distribution function for the RSS signals is challenging. Although research 

is still being conducted to derive an accurate distribution model for RSS random variables in a 

variety of different scenarios, one of the most common models for the distribution of RSS 

random variables, that is also empirically validated and is widely used in wireless and 

positioning literature, is the normal or Gaussian distribution model (Wang et al., 2006), (Chan 

et al., 2009), (Miliorisl et al., 2011). Therefore, each component in a TP vector,   , is assumed 

to be a normally (Gaussian) distributed random variable i.e,           
   where     is the 

mean RSS vector at TP location (in dBm). It is also assumed that all the components in the TP 

vector are mutually independent. The standard deviation of all the random variables    is 

assumed to be identical and denoted by   (in dB). For the radio propagation model, hence, a 

commonly used large scale model which is the log-distance path loss model with log-normal 

shadowing is used, similar to the models utilized in  (Rappaport, 1996), (Malaney, 2007). 



 

 

 

According to this model, the elements of the RSS vector   at any point are given by 

 

      
      

        
  

  
                                                                             (1) 

 

where    
  is the power transmitting from    ,    

 is the measured path loss at the reference 

distance,   is path loss exponent,    is the geometrical distance from    . The last parameter, 

          , is a measurement error vector and assumed to be a zero mean Gaussian 

random variable with a standard deviation given by   (in dB). This parameter models the path 

loss variation at distance    due to shadowing caused by obstacles in propagation. All the 

powers are in dBm and all the distances are in meters. In order for the Gaussian assumption to 

hold, the impact of fast fading is assumed to be absent in the measurements since it can be 

removed with averaging filters (Yousef et al., 2003), (Goldsmith et al., 1994). Although the 

large-scale log-distance path loss model is not perfect for all cases, it provides means to 

incorporate fingerprinting into network simulation and analysis which we attempt in section 

5. 

 

Once the database of fingerprints of the RPs is formed, deterministic methods of 

fingerprinting employ real values of the measurements to calculate the signal distance 

between the points and find the location of the user. We will refer to this distance as the 

"vector distance (VD)". Such a VD calculation based on several signal distances is described 

in the following sub-section. 

 

 
3.3 Various Vector Distances 

 
3.3.1 Minkowski distance 

 

A Minkowski distance between two points, which are TP and a RP RSS vectors, is 

 

         
         –    

  
 
   

    

 

 
                                                                                              (2) 

 

where   is the number of APs and   is the norm parameter. It also refers to    which is the 

norm   between two points. 

 

Manhattan distance is a very common distance, known as city block distance, boxcar distance 

or absolute value distance (Krause, 1986). It is one of the special cases of Minkowski distance 

when    . It represents distance between points in a city road grid. It examines the absolute 

differences between elements of two vectors. City Block distance is given by 

 

        –    
      

                                                                                                                     (3) 

 

Euclidean Distance is the most common use of distance. It is another special case of 

Minkowski distance when    . Euclidean distance represents the shortest distance between 

two vectors in Cartesian coordinate system (Machaj and Brida, 2011) and is given by 

 

         –    
  

 
    

                                                                                                                (4) 

 



 

 

 

Chebyshev distance, minimax metric, or infinity norm between two vectors is the greatest of 

their absolute magnitude along the vector dimension. It is obtained by putting     in 

Minkowski distance. In a system where the calculation time is very crucial, the Chebyshev 

distance can be a good alternative instead of other distances. This distance is given by 

 

           –    
                                                                                                       (5) 

 
3.3.2 Canberra distance 
 

Canberra distance is the weighted version of Manhattan distance in which the weights are the 

sum of the absolute variable values. Canberra distance expresses the sum of fraction of 

differences over sum of two vectors. Since it is using the absolute values, the sum of fractions 

has a value between 0 and 1. If one of coordinates becomes zero, the term turns to unity no 

matter how much the other value is, thus the distance will not change. It is given by 

 

      
    –   

  

          
  
  

                                                                                                                    (6) 

 

Note that if both elements become zeros, then we should define 
 

 
  . When both elements 

have very small values, this distance is very sensitive to a small change (Machaj and Brida, 

2011). 

 

 
3.3.3 Cosine distance 
 

Cosine distance in fact measures similarity rather than distance or dissimilarity. A higher 

value of angular separation represents that the two objects are very similar (Machaj and Brida, 

2011). Angular separation is defined as 

 

       
        

  
    

     
  

        
   

    

 
 

                                                                                                                (7) 

 

Similar to cosine, the value of angular separation is [-1, 1]. It is sometimes referred to as 

Coefficient of Correlation. 

 

 
3.3.4 Sorensen distance 
 

Sorensen distance is also referred to as Bray Curtis distance. When the summed differences 

between the variables are normalised by the summed variables of the objects, Bray-Curtis will 

become a modified version of Manhattan measurement. In the normalised version, in fact the 

space is assumed to be a grid similar to the city block distance. If all elements of Sorensen 

distance are positive, its value is between zero and one. Zero Sorensen distance expresses the 

exact similar vectors (Machaj and Brida, 2011). The Sorensen distance can be calculated as 

below 

 

   
         

   
   

         
   

   

                                                                                                                                        (8) 

 

Sorensen distance does not define when both vectors are zero. The normalization is done by 



 

 

 

dividing absolute difference by summation. 

 
3.3.5 Hellinger distance 

 

The Hellinger distance is a criterion that satisfies the triangle inequality. It is in fact the 

   norm of the difference of the square root vectors (Vorst and Zell, 2010) 

 

   
 

  
         

  ,                                                                                                                            (9) 

 

where    guarantees that      for all probability distributions. It is a pretty similar concept 

to a quantity known as Fidelity or the Bhattacharya coefficient of two probability distributions  

            
  

     by the relation 

 
  

       .                                                                                                                                     (10) 
 

 
3.3.6 Chi-square distance 
 

The Chi-square distance is defined as (Chardy et al., 1976) 

 

      
        

 

  
  

                                                                                                                              (11) 

 

where    
       

 

 
. It should be noted that this distance measure is similar to Euclidean 

distance but it is weighted by   . 
 

 
3.3.7 Jeffrey distance 
 

The Jeffrey divergence is defined as 
 

               
   

  
     

     
   
 

  
    

                                                                                         (12) 

 

 

4. PROBABILITY OF ERROR (POE) IN POSITIONING 
 

By utilizing the NN method, if the TP is located in the     region (see Figure 1), the correct 

decision about the position of the TP is made when the VD between TP and    , i.e., 

         
   is less than the distance between the TP and the rest of        . Otherwise, the 

wrong position is returned which causes an error in positioning. The NN method could be 

mathematically written as 

 

         
            

                                                                                                         (13) 

 

or equivalently 

 

            
            

    ,                                                                                      (14) 

 



 

 

 

for all                
 

The probability of correct positioning of the TP between all regions can be written as 

 

                                 
                                                                                            (15) 

 

By using the fact that the random variables              are independent, the probability 

of correct positioning of TP is written as (Kaemarungsi and Krishnamurthy, 2004) 

 

                 
   
   

                                                                                                       (16) 

 

Thus given the        the POE in positioning of the TP can be written as 

 

              

                         
 

  
 
   
   

                                                                                         (17)                        

 

 

5. SIMULATION AND NUMERICAL RESULTS 
 

The environment layout is illustrated in Figure 2, which is a 6 m x 6 m indoor area including 

36 RPs and 20 uniformly distributed TPs. The RP separation is 1 meter. There are four APs at 

the corners of the environment. Note that the distributions of RPs and APs do not have to be 

uniform and can be randomly grided. For simplicity we assume the RPs are evenly distributed 

in the area. The nearest RP for one TP,    , is the RP located at the same grid as that TP, and 

other RPs are considered as    . 

 

 

Figure 2. The system model layout. 
 



 

 

 

In order to generate the RSS values at all points to build the database of fingerprinting, (1) is 

used with this assumption that all APs have the same transmission power. By knowing the 

values of        
   and  , we generated 5000 random Gaussian RSS values for all RPs and 

TPs. The values used for these four parameters are derived from the measured data in our real 

experiment presented in section 6, which are 18 dBm, 44.90 dBm, 3.14, and 3.54 dB for 

       
   and  , respectively. Note that the real measurements can also be utilised for RSS 

values with no changing in the calculations. 

 

Now that the indoor environment is set up and the location fingerprints are logged to the 

database, the mathematical expression from (17) can be applied to find the POE when 

different vector distances are employed. As mentioned before, we have 5000 RSS vectors of 

                for each TP. Therefore, 5000 VDs between a TP and each RP are calculated 

based on different vector distances. We have 5000    for each of which (17) can be applied 

and the POE of the TP is then achieved. Taking the average over the POE of all TPs gives the 

average POE for the whole area. 

 

For the same environment, the fingerprinting positioning procedure is carried out to find the 

MDE so that we could understand the relationship between the POE and distance error. For 

this purpose, each TP sample is considered as a user measurement vector and the NN 

algorithm is run to calculate the distance error. Since there are 5000 samples at TP, 5000 

distance errors using NN method can be obtained. By taking the average of them, we can have 

a good estimate of MDE. 
 
 
5.1 Vector Distance Comparison 
 

This section investigates the impact of various distance measures defined in subsection 3.3 on 

localisation error when the NN deterministic method is used for the core fingerprint retrieval 

and assessment task. For the test bed of Figure 2, the NN fingerprinting is carried out to 

compute the POE and the MDE based on the mentioned VDs as explained in the previous 

part. Figure 3 illustrates the calculated POEs and the MDEs. The variation of both POEs and 

MDEs are similar and when the probability of returning the wrong position is minimum, the 

MDE of fingerprinting is also in its minimum value. This figure indicates that POE and MDE 

are almost proportional. As can be seen, employing Euclidean distance shows the lowest POE 

and MDE and Cosine, Helinger, Chi-square, and Jeffrey distances yielded roughly the same 

accuracy which is close to Euclidean. 

 

Table 1 depicts the complexity and required memory comparison between the VDs. 

According to this Table, all the VDs have the same complexity and required memory when 

they are used for positioning except the Chebyshev distance, which has lower complexity than 

the others since the operations in each measure are different and the ones with square roots 

will take longer. We denote P as the number of APs, R as Number of RPs, T as number of 

points we want to localise, B as number of required units (e.g. bytes) to save RSS from each 

AP, and S as the number of samples for observable APs at each TP. For the all mentioned 

distances except Chebyshev, the RSS corresponding to all P AP should be first gathered. Thus 

the total number of RSS registry is    . Moreover, for the TP, a total number of S samples 

are required. For Chebyshev distance, the RSS calculation is independent from the number of 

access points. In terms of the total amount of the required memory, all the registered 

information should be gathered for the whole number of TPs. 

 



 

 

 

 

Figure 3. The POE and MDE when different VDs are used in NN method. 

 

 
Vector Distance  Complexity Required Memory (Bits) 

Chebyshev                    
Others                      

Table 1. Complexity and required memory comparison between the VDs 

 

When designing an indoor fingerprinting system these issues are important. Such comparisons 

allow the designers to decide based on the computational capacity and power of the devices 

they use. They should also consider the trade-off between accuracy and complexity of the 

positioning method. Low complexity is very important especially for the fingerprinting 

systems localising a high number of users over a vast area. 

 

 

6. REAL EXPERIMENTS AND RESULTS 
 

Here the experimental fingerprinting measurements from our previous work for Wi-Fi 

positioning (Li et al., 2007) are used to verify the simulation results. The experimental test 

bed is the 4th floor of Electrical Engineering building at the University of New South Wales, 

Sydney, Australia. Its dimensions are 11 m by 23 m, and consists of 7 rooms, which are a 

typical indoor office environment, and the corridor. In this experiment, there are 119 RPs and 

28 TPs. The RPs are distributed as evenly as possible. There are 5 APs available when the 

Wi-Fi data are collected. Figure 4 illustrates the layout of this experiment and distribution of 

RPs, TPs, and APs. 

 

At each RP the user faced east first, and recorded the RSS of each AP. Then the orientation 

was changed to north, west and south consequently, and the RSS values were logged. To 

properly take into account the stochastic fluctuations of radio signals, a total of 12 

measurements were made at each point and then the average of all the RSS of each AP was 

calculated, and was inserted into the database as the fingerprint of that location. The data were 

collected at different time periods, but most of it was logged during the daytime over a few 

weekends, so that not many people were present. However the environment of the test would 



 

 

 

be different from that on weekdays, so the results should be more accurate than could be 

achieved during weekdays. The same method and equipment of RSS collection was used for 

the TPs. More information on the accuracy of the positioning based on Wi-Fi signals can be 

also found in (Moghtadaiee et al., 2011b). 

 

 

Figure 4. The real experiment layout with APs, RPs, TPs positions. 

 

The NN MDEs obtained when using different VDs in a Wi-Fi positioning system are 

illustrated in Figure 5. The same result as the simulation results can be seen in the real 

experiment as well. Among all VDs, Euclidean distance shows the least MDE when NN is 

carried out, which has been mathematically proven in our previous work (Moghtadaiee et al., 

2014a). The MDEs obtained from the Helinger, Chi-square and Jeffrey distances are just 

slightly higher than for Euclidean distance. 

 

 

Figure 5. NN MDE in Wi-Fi positioning when different VDs are used. 



 

 

 

All the analysis and discussions up to this point were based on the NN method which has low 

complexity and can be easily used. However, the effect of using various VDs on KNN and 

KWNN algorithms in a real environment is also of interest. We first examine the Wi-Fi 

fingerprinting system to find out how MDE is affected by root coefficient in broadly-used 

Minkowski distance. Figure 6 shows the variation of Minkowski distance for all NN, KNN, 

and KWNN. The NN MDE reaches the minimum at    . Based on this figure, however, the 

least MDE for Wi-Fi positioning system when the KNN and KWNN methods are used is 

achieved when      . It should be noted that when the special cases of Minkowski distance 

are just considered, Manhattan distance is the best distance measure for the KNN and KWNN 

in Wi-Fi positioning system. 

 

Figure 7 compares the performance of all three deterministic algorithms under the choices of 

different VDs. In contrast to the NN fingerprinting system in which utilising Euclidean 

distance produces the least MDE, positioning results for KNN and KWNN (    based on 

(Li et al., 2007)) indicates that Manhattan distance achieved the highest accuracy over other 

distance measures. The Canberra and Sorensen distances in combination with the KNN and 

KWNN algorithms give almost the same MDE as Manhattan distance. Such findings are 

needful for a designer of the indoor fingerprinting systems to optimise the systems and get the 

least positioning error out of the existing fingerprinting data. 

 
 

 
Figure 6. MDEs in the Wi-Fi positioning system using different values of   in Minkowski distance for 

the choices of NN, KNN, KWNN method. 

 

 



 

 

 

 

Figure 7. MDEs of the Wi-Fi positioning system for different distance measures, and choices of 

deterministic fingerprinting algorithms (     ). 

 

 
6.1 VDs Influence on FM Positioning 

 

The simulation analysis of this work so far has been for an indoor fingerprinting system 

where transmitters are close such as Wi-Fi positioning, wheras FM transmitters are much 

further away. This section examines the behaviour of the proposed FM fingerprinting system 

which is fully investigated in our previous work (Moghtadaiee et al., 2014b) when all these 

VDs in combination with NN, KNN, and KWNN algorithms are employed. The FM 

positioning system includes 150 RPs, 28 TPs, and 17 FM channels. 

 

We first examine the system to find out how Minkowski distance is affected by root 

coefficient in FM positioning. Figure 8 shows the variation of Minkowski distance for all NN, 

KNN, and KWNN. It is evident from the figure that, unlike the Wi-Fi case for KNN and 

KWNN, the least MDE for the FM positioning system is achieved by Euclidean distance for 

all the NN, KNN, and KWNN methods. 

 

The influence of different distance measures and different deterministic fingerprinting 

algorithms NN, KNN, KWNN on the FM positioning system are illustrated in Figure 9. The 

results are calculated based on various sets of RP numbers. These results show that among the 

special cases of Minkowski distance, Euclidean distance has the least MDE in combination 

with NN, KNN, and KWNN even for various sets of RPs. The interesting finding of this 

figure is that almost in all cases of RP sets, the best accuracy is achieved by the Canberra 

distance. When the RP number is 150, the best MDE was 2.96 m in (Moghtadaiee et al., 

2014b), which was given by KWNN (   ) using Euclidean distance, while the Canberra 

distance in combination with NN provides 2.44 m localisation error improving the accuracy 



 

 

 

by 18%. Thus, unlike the Wi-Fi positioning system, FM localisation achieves the lowest MDE 

by using Canberra distance. 

 

 

Figure 8. MDEs in the FM positioning system using different values of   in Minkowski distance for 

the choices of NN, KNN, KWNN method. 

 

 

 

Figure 9. MDEs in the FM positioning system for the different distance measures, choices of 

deterministic fingerprinting algorithms (NN, KNN, KWNN) for various sets of RP numbers      . 

(definition of the colours are the same as Figure 7) 

 

 

7. CONCLUSIONS 
 



 

 

 

In this paper the impact of nine different distance measures on probability of error (POE) in 

positioning and mean distance error (MDE) for NN deterministic method of location 

fingerprinting is investigated. The relationship between the POE in positioning and distance 

error is analysed and found to be similar, which has an important role for calculating the 

accuracy of the positioning systems. The simulation results demonstrate that employing 

Euclidean distance shows the lowest POE and MDE for the indoor fingerprinting 

environment. The real test experiments are examined for both Wi-Fi and FM systems based 

on NN, KNN, and KWNN methods. The results indicate that for a Wi-Fi fingerprinting 

system, Euclidean distance for NN and Manhattan distance for KNN or KWNN give the least 

MDE. In FM fingerprinting, however, Canberra distance provides up to 18% higher accuracy 

than Euclidean distance. 

 

It should be noted that the results prove that the difference between using different VDs are 

not very significant. However, both accuracy and complexity should be considered by 

network designers. Depending on the application, a higher accuracy or lower complexity is 

needful. In some applications, accuracy is critical and even a few centimetres matter, so 

utilizing the optimum distance measure can play an important role, while to localize a high 

number of users over a vast area low complexity is essential. 
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