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ABSTRACT 
 

This paper discusses design, implementation and performance analyses of 
the multi-sensor personal navigator prototype, currently under development 
at The Ohio State University Satellite Positioning and Inertial Navigation 
(SPIN) Laboratory. The key component of the system architecture is a 
simplified dynamic model of human locomotion used for navigation in the 
dead reckoning (DR) mode. An adaptive Knowledge-Based System (KBS), 
based on Artificial Neural Networks (ANN) and Fuzzy Logic (FL), is 
implemented to support this functionality. The KBS is trained during the 
availability of GPS signals, and supports DR navigation in confined and 
GPS-denied environments. The primary human locomotion parameters used 
are step length (SL) and step frequency (SF); step frequency is extracted 



 

 

 

from GPS-timed step-sensors located in the shoe soles of the operator. SL is 
correlated with several data types, such as acceleration, acceleration 
variation, SF, terrain slope, etc., collected by the sensor assembly of the 
personal navigator; these parameters constitute the input to the KBS, which 
provides the SL estimate. The KBS-predicted SL together with heading 
information provided by a magnetometer and/or gyro, support the DR 
navigation. The target accuracy of the system is 3-5 m CEP50 (circular error 
probable). This paper addresses the design architecture of the integrated 
system and its performance analysis, with the special emphasis on DR 
navigation supported by the human locomotion model. In particular, the 
comparison of the navigation performance of two independent KBS modules 
based on ANN and FL is discussed.   
 
 
KEYWORDS: Personal navigation, knowledge systems, neural networks, 
fuzzy logic  

 
 
 
1. INTRODUCTION 
 
Real-time positioning, navigation and tracking technology that can operate in the indoor and 
outdoor environments with high accuracy, and at low cost, is the ultimate goal for many 
ongoing research activities. In recent years, continued improvements in GPS receiver size, 
performance, sensitivity, and cost have stimulated an explosion of consumer GPS products, 
such as car navigators and pedestrian navigators. Telematics systems, locatable mobile 
phones, GPS-enabled PDAs, and more novel products and applications are announced almost 
daily. Yet many consumers are dissatisfied by the low position accuracy of their devices 
under some circumstances – if indeed they can obtain a position at all. In order to meet the 
growing demand of the military applications, as well as the consumer market requirements for 
accuracy, reliability and continuity, regardless of the environment, i.e., indoor or outdoor, 
GPS must be supported by other navigation means that can facilitate seamless navigation in 
confined environment. An idea of a portable device that can provide navigation and timing 
information regardless of location, weather and other environmental conditions is not entirely 
new, as personal navigators (PN) have been studied for about a decade in different fields and 
applications, such as visual surveillance, rescue operations, security and emergency services, 
police safety and military applications, and recently, the consumer market. The common goal 
of all these applications is to provide precise and reliable position/velocity/heading 
information of an individual in various environments. When line of sight to several GPS 
satellites is clear either GPS alone or an integrated GPS/IMU (Inertial Measurement Unit) 
system can provide the basic navigation functionality, with the accuracy depending on the 
choice of GPS and IMU sensors. In confined environments, however, the main challenge for a 
personal navigator is to design and implement an alternative system that will maintain the 
navigation performance. 
 
In a number of civilian applications, such as pedestrian tracking or navigation, the 
environment can be prepared to handle losses of GPS lock by creating a smart environment 
using active tracking technology, such as RF signals or RFID tags, e.g., Cho et al., 2003; 
Kourogi et al., 2003. Other techniques that can be effectively used in this application are 
pseudolites (e.g., Kee et al., 2000; Soon et al., 2003; Barnes et al., 2003), high-sensitivity 
GPS receivers (Lachapelle et al., 2006) or assisted GPS (A-GPS). However in many 
applications, such as military or rescue operations, it is virtually impossible to prepare the 



 

 

 

environment in advance to fit the needs of non-GPS-based active navigation systems. 
Consequently, in those environments, the tracking system should rely on self-contained 
sensors, such as accelerometers, gyroscopes, digital barometers, electromagnetic compasses 
and step-sensors, possibly augmented by a human locomotion model, to deliver relevant 
parameters required for Dead-Reckoning (DR) navigation, such as heading, walking distance 
and altitude. 
 
This paper presents the design, implementation and performance evaluation of a multi-sensor 
portable navigation system intended for open and confined environments, with a special 
emphasis on DR navigation supported by the human locomotion model. The core of the 
current prototype of the system is a dual frequency GPS receiver supported by recent 
developments in sensor technology, such as MEMS (micro-electro-mechanical) IMU, 
miniaturized barometer, digital compass (and magnetometer) as well as step-sensors (micro-
switches) that support pedometry component of the system. The ultimate goal is to use high-
sensitivity GPS receiver (e.g., SiRF technology). The navigation goal is to achieve continuous 
3-5 m CEP50 (circular error probable) accuracy, with the target application in emergency and 
rescue operations as well as navigation and tracking of dismounted soldiers on the ground. 
The system is designed in an open-ended architecture to allow future extensions of 
miniaturized imaging sensors, such as digital and/or infrared camera and/or laser ranging 
device. 
 
 
2. SYSTEM DESIGN AND IMPLEMENTATION 
 
2.1 Prototype implementation  
 
In the present system design the following sensors are integrated in the tightly coupled 
Extended Kalman Filter (EKF): dual frequency Novatel OEM4 GPS receiver with 
TRM22020.00+GP antenna, Honeywell tactical grade HG1700 IMU (note that Crossbow 
MEMS IMU 400CC used initially does not meet the accuracy specifications for this project, 
based on the initial performance tests (see, Grejner-Brzezinska et al., 2006a, b), step sensors 
(micro-switches) used for timing the operator’s step events, PTB220A barometer (500–
1100hPa pressure range, -40–140F temperature range, 0.5–10Hz update rate, 0.1–3s output 
averaging time, and 1.5 m height accuracy (1 sigma)) and a three-axis Honeywell HMR3000 
magnetometer with an integrated pitch-roll sensor (up to 20 Hz read-out rate, 1º (level), and 2º 
(tilt) heading accuracy (1 sigma)). The GPS carrier phase and pseudorange measurements in 
the double difference (DD) mode, barometric height, magnetometer heading, and the INS-
derived position and attitude information are integrated together in the tightly coupled EKF 
with 27 states. The DD mode is used for performance validation and sensor calibration, while 
a stand-alone point positioning module has also been implemented.  
 
Figure 1 illustrates the current prototype architecture design in (a) GPS/IMU-based navigation 
and human locomotion model training mode, and (b) DR navigation mode; note that 
magnetometer and barometer are also calibrated in mode (a) and are used in mode (b) for DR 
navigation. Figure 1 (top) shows the multi-sensor data stream sent to the EKF, which 
estimates a nine-state navigation solution and all sensor errors. The navigation solution is 
used to train the adaptive Knowledge Based System (KBS) that (1) acquires and stores the 
information about the human locomotion model (SL), and subsequently (2) uses it to navigate 
in dead-reckoning mode during the GPS signal blockage (see, Grejner-Brzezinska, 2006a, b), 
where the KBS training (or expert-derived) information together with the current sensory 



 

 

 

input in the prediction mode is used to evaluate SL to support DR navigation mode. Figure 1 
(bottom) indicates that no sensor calibration is performed during DR navigation. Figure 2 
illustrates the DR module of the system and Figure 3 shows the current sensor assembly in the 
form of a backpack. 
 

 
  

 
Figure 1. Personal navigator: system architecture; training mode (top) and dead reckoning mode 

(bottom) (Grejner-Brzezinska, et al., 2007a). 
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Figure 2. DR module of the personal navigator architecture. 
 
 
Table 1 provides the sensor specifications in terms of stochastic modeling in the EKF 
architecture. Table 2 lists all sensors and their outputs with additional derived parameters that 
are currently used in the personal navigator (PN) prototype; they provide a continuous data 
stream to the KBS module during GPS outages. For more details on the filter design, 
hardware specification and current prototype implementation, see (Grejner-Brzezinska, et al., 
2007a and b, Toth et al., 2007; Moafipoor et al., 2007). 
 

 Initial Covariance 
matrix 

Statistical Model, 
White Noise 

Position 100 m RC, 0 
Velocity 1 m/s RW, 5 μg  

Pitch, Roll 1° Attitude Heading 2°  
RW, 0.001 º/√hr 

Accelerometer Bias 1 mg RW, 20 μg/ √hr  
Accelerometer Scale Factor 120 ppm RC, 0 
Gyro Bias 1°/hr RW, 0.125 º/√hr 
Gyro Scale Factor 10 ppm RC, 0 

 
Table 1. HG1700 sensor specification (RC: Random constant, RW: Random walk); (mg) stands for 

g⋅−310 , (μg) stands for g⋅−610 , and g  is the gravity constant.  
 
 

In to facilitate DR navigation, at the minimum, operator’s step length (SL), step frequency 
(SF) and heading information are needed. In this implementation, micro-switches, located in 
the shoe soles (heal and toes), synchronized with GPS time are used directly to sense the 
impact, i.e., the instances when operator’s shoes hit the ground. These provide an 
instantaneous and accurate step frequency and step count measurements. With heading 
(azimuth, Az) measured by a magnetometer and/or IMU and known step frequency, as well as 
SL provided by the KBS system, DR can be accomplished as:  
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where Δx and Δy are the total distance traveled in the local X and Y direction, and n is the 
number of the steps. 
 

 
Figure 3. Sensor configuration in the current PN prototype. 

 
 

Sensor Sensor Measurements 
Accelerometer - Step events 

- |a|xyz ,  |a|xy, |a|z  
-Var(|a|xyz), Var( |a|xy), Var(|a|z )  
- Max(|a|) , Min(|a|) 
- Tilt (roll and pitch angles at rest) 

Gyroscope - Angular rate 
- Roll, pitch, heading 

Magnetometer/compass - Angular rate 
- Heading 

Barometer - Var(∆h) 
- ∑(|∆h|) 
- Altitude 

Step sensors - Step events  
External data - Person’s height, age, weight 

 
Table 2. Sensors and body locomotion parameterization. 

 
 
 
2.2 Knowledge-Based System: Principles and Algorithmic Design 
 
Currently, two separate architectures are implemented in the prototype of the Knowledge-
Based System, (1) based on ANN, and (2) based on Fuzzy Logic (FL). They are currently 
stand alone modules, and no interaction between them is considered. The performance of both 
modules is currently under testing, and after this task has been completed, the final structure 
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of KBS will be selected, depending on the test results. It is likely that some combination of 
both approaches will be selected; in addition, a control mechanism for switching between 
EKF and DR module will be implemented to assure a seamless transition between the GPS-
driven and GPS-denied navigation environemnts. Even though the performance evaluation of 
the ANN-based system showed good results (Grejner-Brzezinska, et al., 2007b, Toth et al., 
2007; Moafipoor et al., 2007), ANN-based approach to SL modeling does not allow direct 
recognition of the locomotion pattern, and the quality of the output strongly depends on the 
training data sets. Moreover, the addition of constraints (e.g., hallway layout, digital map 
information) is very difficult. To that extent, the implementation based on Fuzzy Logic holds 
the promise of providing more process control, more flexibility and more transparency in the 
SL prediction process, as compared to the ANN-based solution. It is expected that the 
interpretation of operator’s behavior will be possible with the FL-based implementation. 
Moreover, this approach should facilitate an relatively easy addition of constraints, such as, 
hallway layout for indoor navigation, or digital map information. 
 
A very brief overview of the KBS implementations is given below, while for more details on 
both implementations the reader is referred to (Grejner-Brzezinska, et al., 2007a and b, Toth 
et al., 2007; Moafipoor et al., 2007). 
 
 
2.2.1. ANN-based knowledge-based system 
 
The heart of the KBS is a single-layer artificial neural network with Gaussian function (G) 
selected as Radial Basis Function (RBF). A single-layer artificial neural network with RBF 
was selected as an alternative to a multilayer perceptron (MLP) since it is simpler to train, 
even though it typically needs more neurons than MLP (Principe et al., 2000). In Figure 4, n, 
the number of RBF functions, ranges between 30 and 40 in a single hidden layer, and one 
output parameter, SL, is provided. The ANN learning rate was empirically selected as 0.05, 
and the total number of iterations is normally around 500. As shown in Figure 4, the current 
implementation of ANN takes up to six parameters: SF, total acceleration |a|, terrain slope, 
operator’s height, peak-to-peak variation in acceleration, var(|a|), and total change in terrain 
elevation (∑ΔhBaro). Since the input parameters are of different physical nature, the parameters 
are normalized to the same numeric range before they are fed to the ANN. When training an 
ANN, the rule of thumb is: use as input all variables that can be thought of as having 
problem-oriented relevance, but avoid unnecessarily large and inadequate ANN by 
preprocessing of input data (Lee and Mase, 2001). The preprocessing step can be thought of 
as, for example, a suitable transformation. Consequently, to remove any possible correlation 
from the input data, Principal Component Analysis (PCA) was performed on a larger training 
set. The results indicated medium parameter correlation; consequently, reducing the 
parameter space to only three components, corresponding to the three largest eigenvalues, 
achieved a near identical performance as compared to the case when all six parameters were 
used. For details on the PCA-based data preprocessing see (Grejner-Brzezinska et al., 2006b 
and 2007a). Table 3 illustrates an example of the performance of the ANN-based KBS for SL 
modeling and DR trajectory reconstruction with and without PC transformation. 
 



 

 

 

 
Figure 4. Conceptual design of the RBF-based ANN. 

 
 

Without PCA With PCA 
ANN input 
parameters 

Training 
Mean ± Std 

[cm] 

Testing 
Mean ± Std 

[cm] 

Training 
Mean ± Std 

[cm] 

Testing 
Mean ± Std [cm] 

SF, |a|, Var(|a|), 
Slope 2.3 ± 4.9 7.1 ± 5.0 0 ± 0.3 1.5 ± 1.7 

 

Solution type Mean 
[m] 

Std   
[m] 

Max 
Difference  

[m] 

End 
Misclosure 

[m] 

CEP(50%) 
[m] 

CEP(95%)
[m] 

DR without 
PCA 1.7 1.4 4.7 2.3 1.3 4.4 

DR with PCA 0.33 0.32 1.07 1.16 0.3 1.0 
 
Table 3. Statistical differences between the reference (known) SL and ANN-predicted SL (top) and the 

resulting DR navigation (bottom). No reduction of the parameter space applied. Loop of 355 
m circumference traveled three times, two loops used for training, one for testing; reference 
heading used. 

 
 
2.2.2. Fuzzy logic-based knowledge-based system 
 
The principal elements in designing a FL system include: (1) defining input and output 
variables, (2) selecting the quantization level of the input and output space and the  
corresponding membership functions, (3) collecting knowledge representation in the form of 
fuzzy rules, and (4) designing the inference mechanism and defuzzification operators (see 
Figure 5). In the current design, six variables are used as inputs to the FL system for SL 
modeling; these are locomotion pattern, stride interval time and its variation, terrain slope, 
operator’s height and trajectory curvature. The output of the system consists of two variables, 
whose combination represents the overall estimation of SL value for each pace. The first 
variable is the average size of SL determined partially by evaluating the locomotion pattern 
and the stride interval. The second variable is the variation of the SL, ∆SL, determined by the 
rest of the input variables. The main objective of such an output design is to approximate the 
SL function in more generic form, independent of the individual operator, but still close to the 



 

 

 

operating environments and other physical dynamic attributes. The details of the design and 
implementation of KBS based on Fuzzy Logic are presented in Moafipoor et al. (2007). A 
brief summary is presented below.  
 

 
 

Figure 5. Fuzzy logic controller architecture (Kosko, 1991). 
 
In general, fuzzy systems combine fuzzy sets with fuzzy rules to model and control complex 
non-linear behaviors. A fuzzy set, A, in a nonempty set, X, is defined by membership 
functions, Aη , interpreted as the degree of membership of each element, x, in the fuzzy set A 
over the unit interval: 
 

{ } XxxAxAxA ∈→= ],1,0[:,)(, ηη   (3) 
 

The value of the membership function indicates the degree of membership of a quantity x in 
the fuzzy set. If the membership value is 1, the quantity is perfectly representative of the set, 
and if it is 0, the quantity is not at all a member of the set. Membership functions are usually 
represented as parametric functions, such as triangle functions, trapezoidal functions, or bell-
shaped functions (see Figure 6 for an example membership function and Table 4 for example 
of fuzzy rules for SL modeling and Figure 7 for a generic design of a Fuzzy System for SL 
modeling).  
 

 
 

Figure 6. Membership function of SL; on the vertical axis, the membership degree indicates to what 
degree the value of SL is in a set. Based on expert knowledge seven quantization levels for SL 
estimation (the number of locomotion patterns) were defined, including zero (Z), very short 
(V-S), short (S), normal (N), semi-long (S-L) long (L), and very long (V-L), indicating the 
degree of membership of the average SL parameter to the corresponding fuzzy set. 

 
 



 

 

 

 
 

Figure 7. KBS for SL modeling based on Fuzzy Logic. 
 
 

Antecedent Consequent 
SI is Normal or Activity is Walking SL is Normal 
∆SI is Negative ∆SL is Big Increase 
∆SI is Positive ∆SL is Big Decrease 
Activity is Walking and Path is Semi_Curve ∆SL is Small Increase 
Activity is Walking and Path is Curve ∆SL is Small Decrease 
SI is Slow and Activity is Crawling and Slope 
is Uphill and Operator’s Height is Medium 

∆SL is Small Decrease 

SI is Slow and Activity is Walking and Slope 
is Downhill and Operator’s Height is Medium 

∆SL is Small Increase 

SI is Semi-Fast and Activity is Walking and 
Slope is Level and Operator’s Height is 
Medium 

∆SL is Small Decrease 

SI is Semi-Fast and Activity is Running and 
Slope is Level and Operator’s Height is 
Medium 

∆SL is Small Increase 

 
Table 4. Fuzzy rules for SL modeling: IF Antecedent THEN Consequent. 

 
 
3. PERFORMANCE EVALUATION OF KBS: ANN vs FUZZY LOGIC 
 
The performance evaluation of the KBS has been documented in earlier publications (e.g., 
Grejner-Brzezinska et al., 2006b, 2007a and b) where test data were collected by multiple 
operators in the outdoor environment. In this section, the emphasis is on the most recent 
system testing performed predominantly indoors. For completeness, Table 5 provides typical 
performance statistics for the outdoor tests.  
 
The test data were collected on August 21, 24, 26, 2007 in the one-story building of the 
Center for Mapping at the OSU Campus and in the neighboring parking lot. Two different 
operators, S and E, collected data both indoors and outdoors, and ANN and Fuzzy Logic KBS 
were used for SL modeling and subsequently for the DR trajectory computation. A 5 to10-
minute initialization/calibration was performed outside the building in the form of two loops; 
then the operators were asked to return to the initialization point, collect data for a few static 
epochs, and proceed to the indoor data collection. After completing two indoor loops, 
operators returned to the starting point and collected again a few epochs of static data for 
reference. The indoor reference trajectory was established by classical surveying methods by 



 

 

 

measuring a set of reference points with cm-level accuracy (see Figure 8 for the test point 
layout). The differences between the reference and DR trajectories were analyzed as a 
measure of the DR navigation performance. 
 

Test 
data set 

SL 
modeling 

Mean 
[m] 

Std 
[m] 

Max 
[m] 

End 
Misclosure

[m] 

CEP(50%) 
[m] 

CEP(95%)
[m] 

Fuzzy 
logic 0.67 0.21 0.95 0.91 0.60 0.90 Loop  

86 m ANN 0.18 0.10 0.38 0.09 0.19 0.37 
Fuzzy 
logic 0.58 0.25 0.90 0.65 0.62 0.83 Loop  

 97m ANN 0.40 0.11 0.62 0.97 0.43 0.53 
 
 

Test 
data set 

SL 
modeling 

Mean 
[m] 

Std 
[m] 

Max 
[m] 

End 
Misclosure

[m] 

CEP(50%) 
[m] 

CEP(95%)
[m] 

Fuzzy 
logic 2.62 0.76 3.34 3.14 2.99 3.29 Loop  

86 m ANN 2.09 0.84 3.07 2.25 2.20 3.00 
Fuzzy 
logic 1.87 0.47 2.86 2.36 

  
1.87 2.57 Loop  

 97m ANN 2.06 0.54 3.00 3.14 2.15 2.85 
 
Table 5. Navigation performance assessment: outdoors: true heading used in DR mode (top); heading 

provided by calibrated HMR3000 magnetometer (bottom). 
 
Tables 6-7 summarize the DR navigation results for both operators using FL- and ANN-based 
SL modeling and heading provided by the magnetometer (Table 6) and by the gyro (Table 7). 
As can be observed in the Tables, gyro heading provides substantially better results, as 
compared to the magnetometer heading. Both KBS implementation provide comparable 
results. More tests are needed in more complex environments, such as staircase and sloping 
terrain, before the architecture of the KBS module can be finalized (for preliminary results on 
sloping terrain see Grejner-Brzezinska et al., 2007b).  
 

Test data set 
SL 

model 

Mean 

[m] 

Std 

[m] 

Max 

[m] 

End Misclosure 

[m] 

CEP (50%) 

[m] 

FL 0.78 0.87 1.61 2.18 0.49 
Operator S 

ANN 1.24 0.75 1.88 2.14 1.17 

FL 0.84 0.81 1.95 2.75 0.73 Operator E 

ANN 0.80 0.56 1.45 1.94 0.77 

 
Table 6. Indoor navigation performance assessment; HMR3000 magnetometer heading used in DR 

mode.  



 

 

 

 

Test data set 
SL 

model 

Mean 

[m] 

Std 

[m] 

Max 

[m] 

End Misclosure 

[m] 

CEP (50%) 

[m] 

FL 0.43 0.92 1.17 1.42 0.45 
Operator S 

ANN 0.41 0.54 1.07 1.10 0.43 

FL 0.59 0.43 1.25 1.14 0.59 Operator E 

ANN 0.62 0.47 1.11 1.26 0.65 

 
Table 7. Indoor navigation performance assessment; HG1700 gyro heading used in DR mode.  
 
 
4. CONCLUSIONS 
 
The prototype of human locomotion modeling (step length, SL) using ANN- and FL-based 
KBS to support personal navigation in DR mode during GPS signal outages or indoors was 
presented. Sample training and testing data were collected indoors and outdoors by different 
operators. The focus of the study presented here was on assessing the performance of the two 
approaches to KBS, namely ANN and FL. The results showed that CEP50 < 3m in 
positioning performance could be consistently achieved for the tested trajectories. Up to date 
testing revealed that outdoor DR trajectories up to 500 m and indoor trajectories up to 100 m 
provide navigation performance within the project specifications. More tests are still 
underway and additional algorithmic implementation follows, such as ZUPT utilization and 
appropriate heading modeling using ANN and/or FL.  
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Figure 8. Indoor navigation: ANN and FL SL modeling, (top) augmented by magnetometer heading, 

operator S, (bottom) augmented by gyro heading, operator E. The squares indicate floor-
placed reference points, the crosses denote the wall targets used for image referencing (not 
addressed here).  
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