

Contents

- 1. Introductions
 - 1) Backgrounds
 - 2) Problem in previous study
- 2. Cycle-slip Detection
- 3. Experimental Results
 - 1) Experimental Setup
 - 2) Performance Analysis
- 4. Conclusions

Background

- The GNSS used in diverse and wide application fields
 - ITS (Intelligent Transportation System)
 - AVLS (Automatic Vehicle Location System)
 - PDM (Physical Distribution Management)
 - Etc...

CDGPS technique is frequently applied to those applications

■ Background

- The multipath error is mostly occurred in the ground transportation environment
- The multipath error is an important performance factor of the float solution
- The accuracy of float solution heavily influences the performance of CDGPS

Previous Study

- Adaptive Filter Design
 - Multipath error is effectively mitigated by Adaptive Filtering

	2DRMS [m]	Float solution Position Error		Fixed solution Position Error	
		L1	L1/L2	L1	L1/L2
	LS	2.49	1.98	7.31	2.67
	/ CS+LS	1.55	1.13	3.12	1.04
	ACS+ASF+KF	0.93	0.77	1.57	0.73

■ Previous Study

- Step1: Smoothing filter
 - Using the differenced carrier phase measurements
 - Simply average measurements over *M* epoch

$$\rho_k = \frac{1}{M} \rho_k + \frac{(M-1)}{M} \left[\rho_{k-1} + (l_k - l_{k-1}) \right] \qquad \rho_1 = \rho(1)$$

$$\rho : \text{Code measurement}$$

$$l : \text{Carrier measurement}$$

- Step2: Shaping filter
 - Using the 1st Gauss Markov Process
 - Eliminating the bias, drift and periodic error

Previous Study

- Step3: Kalman filter
 - System equation

$$X_{k} = \Phi_{k/k-1} X_{k-1} + \Gamma_{k/k-1} U_{k-1} \qquad U_{k} \equiv N(0, Q_{k})$$

Measurement equation

$$Z_k = H_k X_k + V_k$$

$$Z_{k} = \begin{bmatrix} \rho_{L1/L2} \\ l_{L1/L2} \end{bmatrix} \quad V_{k} = \begin{bmatrix} v_{L1/L2} \\ w_{L1/L2} \end{bmatrix} \sim N \begin{bmatrix} Q_{D\rho_{L1/L2}} & 0 \\ 0 & Q_{Dl_{L1/L2}} \end{bmatrix}$$

$$Q_{D\rho_{L1/L2}} = E\{ [v_{L1/L2}][v_{L1/L2}]^{T} \} = DD \cdot \sigma_{\rho_{L1/L2}}^{2} \cdot DD^{T}$$

$$Q_{Dl_{L1/L2}} = E\{ [w_{L1/L2}][w_{L1/L2}]^{T} \} = DD \cdot \sigma_{l_{L1/L2}}^{2} \cdot DD^{T}$$

■ Problem

- When cycle-slip occurred, the margin of measurement error is extended
- Because of carrier-smoothing of code measurement

Cycle-slip Detection

Cycle-slip Detection using Doppler frequency

- Using the Time Differenced Carrier Phase measurement
- Using the Doppler frequency

Φ: Carrier Phase measurment [cycle]

 $\Phi' = \Phi(k) - \Phi(k-1)$: Time Differenced Carrier Phase measurement [$\Delta cycle / epoch$]

$$\Phi' - f_{dopp} = 0$$

$$= Cycle - slip \ Detector$$

Cycle-slip Detection

- Cycle-slip Detection using Doppler frequency
 - Method 1 Eliminate the measurement

Method 2 – Correction by Doppler measurement

Experimental Results

■ Experiment Setup

Shielded by the building height of 3.25m

23 m

Baseline

Experimental Results

■ Experiment Setup

- S/W CDGPS algorithm
- CDGPS algorithm using LAMBDA method

Observation Equation

$$y_{L1} = Bb + Aa_{L1} + e_{L1}$$
 $y_{L2} = Bb + Aa_{L2} + e_{L2}$
 $y = [\rho \ l]^T$ $B = [H \ H]^T$ $A = [0 \ \lambda I]^T$ $e = [v \ w]^T$

P :code measurement

I :carrier measurement

H:observation metrix

 ρ :code measurement v :code measurement noise

w :carrier measurement noise

λ :wave length

Experimental Results

■ float & fixed solution

2DRMS [m]	Float solution Position Error	Fixed solution Position Error
None	11.73	11.82
Method 1	10.07	10.18
Method 2	11.56	11.64

Conclusions

Summary & Results

- This paper consider about the cycle-slip detection for CDGPS
- Cycle-slip detection method adopted to the CDGPS using LAMBDA method
- By using cycle-slip detection method, the navigation performance of CDGPS is slightly improve
- The quality of Doppler measurement is not enough to correct the cycle-slip

■ Future Study

- Find Cycle-slip correction parameters
- Performance evaluation with Multipath mitigation method (Adaptive Filtering)
- More study for specific condition studies on various environment
 - Dynamic scenarios

Thank you for your attention