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ABSTRACT

A programmable baseband signal processor is one of the essential facilitators
of software-defined radios in general, and for software-defined multi-GNSS
receivers in particular. As many new GNSSs evolve, the flexibility and pro-
cessing power needed for baseband processing increases dramatically. Also,
the underlying hardware needs to cope with various modulation standards and
possibly simultaneously maintaining signal processing from several GNSS.
Meanwhile, the maximum power and resource consumption for a single-chip
receiver is still limited. These challenges require both system and architecture
level innovations. In this paper, we present our analysis on custom multicore
architectures based on the following aspects. First, the dependency of the
baseband channel design on the GNSS signal types (constellation, frequency
bands). Second, the dependency of the baseband channel design on the signal
processing design decisions (coherent and non-coherent integration time etc.).
Third, the inter-core interconnects features that allow implementing a seamless
three dimensions Frequency-Time-PRN search. Besides that, an FPGA plat-
form has been used to examine proposed architectures in regard to resource,
power consumption and configurability.

1 INTRODUCTION

Global Navigation Satellite System (GNSS) receiver technology has changed dramatically since
the first reception of a Global Positioning System (GPS) signal. It evolved from complex elec-
trical circuits-partly analog tracking only one satellite at a time to today sophisticated, small
multichannel receivers. Nowadays, improvement in software and hardware technology seem to
promise reduction in future receiver development costs by using application-specific integrated



Figure 1: Processing rate and flexibility level trend

circuit (ASIC), field programmable gate arrays (FPGA), digital signal processing (DSP) and
general purpose processors (GPPs) to realise a complete GNSS receiver. Figure.1 illustrates
the processing rate and flexibility level trends of a GNSS receiver. It is clear that from left to
right, the level of flexibility increases according to the replacement and integration of software
to hardware. On the reverse side, it is the increment of receiver performance due to the high
throughput of hardware processing in comparison with software processing. Consequently, it
leads to the challenge of finding the border to stop implementing in the hardware and start
processing in the firmware (software).

An emerging approach for GNSS processing is the multi-core design. Humphreys et al. (2009)
showed that conversion of a serial GNSS software receiver to parallel execution on a 4-core
general-purpose processor via minimally-invasive OpenMP directives leads to a more than 3.6x
speed up of the steady-state tracking operation. Similarly, Raasakka et al. (2009) presented
the CRISP project where such a multi-core architecture with network on chip communication
was realised along with the analysis of GNSS application requirements for the multi-core plat-
form. Nevertheless, these approaches are only software-based and the baseband processing is
developed by a general purpose processor (Humphreys et al., 2009) or a soft-core processor
(Raasakka et al., 2009). It fulfils the flexible requirements but the power and resource con-
sumption are not targeted. Multi-core architecture is a promising approach for multi-GNSS
receivers. However, is it capable of developing a specific custom core for multi-GNSS receiver
that can replace the general purpose processor. Some custom core architectures are proposed
and examined in three area: resources, power consumption and reconfigurability in the paper.

The paper is structured as follows. The generic conventional baseband architecture and the re-
quirement of a multi-GNSS receiver are described in Section II. Section III analyses parallel
architectures that can apply for a multi-GNSS receiver on a multi-core platform. Section IV
presents a fully programmable GNSS receiver custom core, its advantages and also the draw-
backs. The combination of an advanced dedicated correlator and a custom core is illustrated in
section V. Finally, some concluding remarks are provided in Section VI.

2 CONVENTIONAL BASEBAND ARCHITECTURE

A typical GNSS receiver architecture is shown in Fig. 2. Different frequency band signals
are down-converted and sampled by an Analog-to-Digital-Converter (ADC) at the Intermediate
Frequency (IF). A baseband receiver processes the IF signal and provides accurate estimates of
the delay, phase and frequency of the received signal carrier and spreading code (tracking). It is
also often used for the initial coarse estimates of these parameters (acquisition). The processing,
usually implemented in software, computes the Position-Velocity-Time (PVT) solution.



A generic architecture of a GNSS baseband for signal acquisition and tracking is illustrated in
Fig. 3. The functionality of each block is detailed in (Kaplan and Hegarty, 2005; Shivaramaiah
and Dempster, 2012) and it is so not discussed here.

2.1 Requirements of modern GNSS signals for receiver design

Table 1 shows the center frequency, bandwidth, required IF sampling frequency, primary and
secondary code length of GNSS open service signals. Some important points need to be noted
while designing a GNSS receiver are: 1) increased signal bandwidths demand higher sampling
frequencies that lead to the increase in the baseband minimum clock speed; 2) the BOC (Binary
Offset Carrier) modulation requires more delayed parallel tap correlator circuits to accurately
acquire the signal; 3) use of memory codes demands additional memory to store the spreading
codes; 4) use of secondary codes leads to an increase in acquisition and tracking sensitivity but
also demands a new method to deal with code and data bit transitions.

The different characteristics of GNSS signals requires the various baseband architecture to re-
ceive the signals. Therefore, among the baseband channel components shown in Figrure 3, the
following modules should be take into account while processing modern GNSS signals.

Code Generator: GNSS signals have various spreading code lengths, almost of them are
generated by Linear Feedback Shift Registers (LFSR) and only GALILEO is memory code.
Therefore, combining LFSRs and memory code or using only memory code should be consid-
ered.

Carrier Mixer and Local Reference Mixers: Depending on the IF signal output bit from
the RF frontend ADC and its quantisation value, both the mixers process and output value
should be flexibly changed to adapt with the frontend characteristic. Besides that, sub-carrier
generator are required to process new signal modulation types (CBOC, MBOC or AltBOC).

Number of correlator taps (R): According to the modulation type of GNSS signals,
the number of correlator taps used for tracking process is variable. BPSK needs three half-
chip delay taps (E, P, L) while BOC requires five quarter-chip delay taps (VE, E, P, L, VL).
Moreover, Shivaramaiah et al. (2004) showed that the more correlator taps that are synthesised,
the faster the acquisition is.

Accumulator and Integration: Coherent, Noncoherent or Differential integration are
three main integration techniques applied in GNSS receiver. The variety of GNSS signal mod-

Figure 2: GNSS receiver block diagram Figure 3: Generic digital receiver channel block diagram



Signal name

Carrier frequency

(Typical bandwidth)

(MHz)

Required IF

sampling

frequency

(MHz)

Modulation

type

Primary

code length

(Memory code)

(Y/N)

LFSR

length

(bits)

Secondary

code length

(Y/N)

Chipping

rate

(MHz)

GPS L1 C/A 1575.42 (2) 4 BPSK 1023 (N) 10 (N) 1.023

GPS L2C 1227.6 (2) 4 BPSK 10230 (N) 27 (N) 1.023

GPS L5 1176.45 (20) 40 BPSK 10230 (N) 13 10 (Y) 10.23

GALILEO E1 1575.42 (4) 8 MBOC 4092 (Y) N/A 25 (Y) 1.023

GALIELO E5 1191.795 (50) 100 AltBOC 10230 (N) 14 100 (Y) 10.23

BEIDOU B1I 1561.096 (4) 8 QPSK 2046 (N) 11 20 (Y) 2.046

Table 1: Modeern GNSS signal characteristics

ulation and spreading code lengths lead to different requirements on the integration method and
the integration and dump duration, especially, when the receiver also has to handle the transition
of secondary code beside the navigation data bit.

Serial or Parallel search: There are 3 search methods for acquisition: serial search (time
domain correlator), parallel code search and parallel frequency search (FFT based method).
Despite the computational and speed attractiveness of FFT based methods, time domain corre-
lators are still widely used because of implementation simplicity. In many DSSS systems binary
signals are used with multiplications implemented as sign changes. Fixed-point FFT implemen-
tations for long sequences are challenging and calculations are not accurate due to quantisation
of the transform coefficients and intermediate products. Moreover, the FFT based methods can
only applied for acquisition , when move to tracking, the baseband channel has to be back to
use time domain correlator. Therefore, the serial search is preferred for multi-GNSS receiver
design.

To sum up, new characteristics of modern GNSS signals require a multi-GNSS receiver to
fulfil the following aims: 1) Eliminating the dependency of the baseband channel design on
the GNSS signal types (constellation, frequency bands); 2) Wiping out the dependency of the
baseband channel design on the signal processing design decisions(coherent, non-coherent, or
differential integration); 3) Providing an interconnected feature that allows cascading in three
dimensions to implement a seamless Frequency-Time-PRN search.

3 PARALLEL ARCHITECTURE FOR MULTI-GNSS RECEIVER

Depending on the characteristics of modern GNSS signal, the section presents an analysis in
parallel architectures that can apply for multi-GNSS signal processing on multicore processor
or multiple processors.

3.1 GNSS system level parallelism

In the architecture, GNSS systems can be separated at core-level or processor-level. It means
that one core or processor processes one GNSS signal independently. Another core works as
the role of a master or a combiner that receives navigation data from other cores to compute
Position, Velocity, and Time (PVT) of the receiver (Figure 4). It can be seen as the addition
of separated single GNSS receivers to become a multi-GNSS receiver. The advantages of the
design are that it was high modularity and it can easily expand when a new navigation system
appears. In contrast, the disadvantage is loose integration between systems. For example, while
working in an urban canyon, the receiver may not acquire enough (three or four) GPS, Galileo,



or GLONASS satellites thus it cannot navigate. However, if it combines signal from different
systems such as two GPS, one Galileo, and one GLONASS satellites, it could calculate the
receiver’s position.

3.2 Frequency band level parallelism

Although there are many GNSS systems such as GPS, GALILEO, GLONASS, or BEIDOU and
each system contains multiple frequency band signals, some of them use the same frequency
for carrier wave. For example, GPS L1 and GALILEO E1 have the same centre frequency at
1.575 GHz, Galileo E5 band overlaps with the GPS L5 band at frequency 1.176 GHz. Based
on these factors, receivers can parallel at frequency band level as in Figure 5, in which, first
core/processor processes GPS L1/ Galileo E1, second core/processor processes GPS-L2, and
third core/processor deals with GPS L5 and Galileo E5 signals. Similar to GNSS system level
parallelism in the previous section, the architecture is high modularity and it is easily extended.
Nevertheless, it also loses integration across signals of the same and different systems. More-
over, one frequency band can not benefit from others to achieve the maximum extension. For
example, the integration of dual frequency provides the best solution to resolve integer ambi-
guity as using a Real Time Kinematic (RTK) algorithm. By doing that, the receiver can reach
centimetre to millimetre accuracy. Another problem needs to be addressed is that a very high
payload of inter-core/processor communication may be required if it implements any integra-
tions between two frequency bands.

3.3 Channel level parallelism

Channel level parallelism means that a core/processor works as a receiver digital logic channel
(Figure 6). Consequently, if the receiver has N channels, it must have at least N cores/processors.
The concept is attractive because cores/processors can be flexibly configured to simultaneously
process different GNSS signal types and frequency bands. The integration between systems as
well as various frequency bands can be easily achieved by the combination algorithm inside the
master core. However, one core/processor is much more capable of handling one channel, it
leads to a waste of resources. In other words, a multi-GNSS receiver needs dozens of channels
but none of the modern high-end processors has enough of cores and to try to combine this
number of processors in one system can result in overkill of power and resources consumption.
Nevertheless, instead of using the general purpose core/processor, if a custom core is specifi-
cally designed for receiving GNSS signals, it not only reduces resource and power consumption
but also makes the innovation of channel level parallelism become viable.

3.4 Software design oriented parallelism

Software parallelism is the simplest method to implement parallel processing. It has been
known as multi-threading or multi-tasking paradigm. It is an efficient technique to take advan-
tage of CPU time and resource; threads/tasks run alternately when an other thread is idle. From

Figure 4: GNSS system-parallel
level receiver

Figure 5: GNSS frequency band
parallel level receiver

Figure 6: GNSS channel paral-
lel level receiver



the user point of view, threads/tasks run simultaneously. The technique can be implemented on
both single core and multi-core/multiple processors. Software parallelism will dramatically in-
crease system performance. Applying software parallelism on the three foregoing architectures
to analyse the benchmark, Humphreys et al. (2009) show that among signal-type-level, channel-
level, and correlation-level, channel-level produces the maximum speed up if the level-2 (L2)
cache memory is shared among the multiple cores. Vice versa, signal-type-level parallelism of
the tracking operation may be best on cores memory loading balance if L2-cache is distributed
among cores. Consequently, load balancing across multiple cores and memory hierarchy are
the new challenges of multi-GNSS software receiver design.

In conclusion, among the parallel architectures, software design oriented parallelism is the most
flexible approach for a programmable multi-GNSS receiver. However, the parallelism is only
suitable for a high-end powerful processor thus it only can be implemented in specific fields such
as research or survey. If it is applied for mobile devices, the power consumption requirement
will quickly drain the battery. Therefore, channel level parallelism with a specific custom core
is a promising approach for multi-GNSS receiver on mobile devices.

4 FULL PROGRAMMABLE CUSTOM CORE

High throughput is the most advantageous of hardware-aided designs, while reprogramability
makes software-aided design the most flexible approach. The more programmable hardware is
implemented, the more flexible design and algorithm can be applied. Taking all the analyses
in 2.1 into account, Figure. 7 proposes a full programmable custom channel core. All mod-
ules inside the core are memory addressed as shown in Table. 2, thus the core controller can
individually access, control and reprogram them via their dedicated address.

4.1 Core architecture

The section briefly introduces architecture of important modules inside the full programmable
core.

Code generator module: includes a Code NCO, 10230-kBit memory that stores the de-
sired spreading code, five 16-bit sampling clock delayed tap registers, and each register can be
controlled to store a half-chip or quarter-chip delay of the spreading code, and some control
registers.

Carrier generator module: contains Carrier NCO, 2 bit sine/cosine look up table, four
16-bit sine/cosine sign and magnitude registers, and control registers.

Data buffer modules: includes four 16-bit registers that stores sign and magnitude value
of the IF signal. It supports 1 to 3 bit conventional frontends and two 2-bit I/Q channels for
frontend that provides in-phase (I) and quadrature (Q) of the IF signal.

Time base: is a counter used to generate 16 sample and n millisecond latches.
Interrupt Vector Routine (IVT) module: contains a priority list of interrupts. The core

controller can access and change the priority via the IVT individual address.
Network Interface Card (NIC) module: is a special module that is used to communicate

with other cores. When the core controller needs to send/receive data, it sends a request to the
NIC, the NIC takes control and transfers/collects data to/from a corresponded core. The core
controller is back to continue other procedures and will be notified by interrupt when the NIC
finishes the transceiver routine.

Instruction and Data memory: are two block RAMs that store program and data of the
core controller.



Figure 7: Full programmable channel core

Core Controller: is a 20 bit instruction word, 16 bit data path 5 state pipeline core with
maximum frequency 120 MHz (synthesised on Xilinx Spartan 3). It contains sixteen 16-bit
registers and supports various instructions: load/store, add, subtract, and, or, xnor, shilf, rotate,
condition branch, interrupt control, etc. as in Figure. 8

4.2 Operation and programmability

As seen in Figure. 2, all modules of the core have their own specific memory addresses. There-
fore, the developer can process them as variables of the core program. It not only makes the
program flexible but also removes the border between hardware and software while implement-
ing the baseband channels. Moreover, when the conventional baseband channel processes each
IF samples the custom core allows simultaneously processing 16 samples. The processing speed
is reduced as a result. The following sections present the flexible programmability of the custom
core.

Table 2: Memory mapping address Figure 8: Core instructiion set



Spreading Code Selection: Instead of using LFSRs, the memory is used to store the
spreading code. At the initial stage, the corresponding spreading codes are downloaded to
the code memory by the core controller. One 18-Kbit RAM block is synthesised as a code
memory, its length is enough to store 16 GPS L1, 8 BEIDOU B1I, 4 GALILEO E1 and 1 GPS
L5/GALILEO E5 PRN codes. The code select register is a group of 4 registers: counter, init bit,
start bit and end bit. The counter register is automatically increased at chipping rate to contin-
uously load code bit from the memory. The init bit register stores the first bit which is used to
correlate, and the start bit register and end bit register store the corresponding spreading code
range. The combination of the registers allows storing more than one spreading code in a mem-
ory and starts correlating from exactly code bit when the core moves from acquisition stage to
tracking stage. The Code NCO can generate full-chip, half-chip and quarter-chip clocks, and the
core controller can enable or disable the half-chip or quarter-chip clocks via the configuration
register. It allows the generation of five half chip delays or quarter-chip delays, corresponding
to GNSS signal modulation type (BPSK or BOC).

Carrier Mixer, Code Mixer, and Accumulator modules: are removed and replaced by
a software program inside the core controller. The arithmetic and logic instructions of the core
are specifically designed to do the mixer and accumulator procedure. The mixer process is done
by the combination of and, or, or xnor function. It makes the process programmable and also
allows easy changes according to the quantisation value of the frontend ADC. The accumulator
module is replaced by arithmetic instructions and a special function adds. The function is
used to accumulate the correlated value based on the corresponding spreading code (add the
correlated value when the spreading code is 0 and subtract when the code is 1)

Integration method: because the accumulator is implemented as a software procedure of
the core, the integration method is flexibly selected among coherent, non-coherent or differential
ones. It can flexibly change not only across GNSS signals but also between acquisition and
tracking routines of the same signal.

To conclude, the custom channel core is specifically designed for a GNSS baseband receiver.
It therefore can move the acquisition and tracking from an external processor or controller to
process inside each channel. By doing that, the receiver can be flexibly programmed to receive
multi-GNSS signals.

4.3 Resource and power consumption

4.3.1 Utilisation resource

The custom core has been synthesised in Xilinx Spartan 3 FPGA, the detail resource consump-
tion of each module is shown in Table. 3. The core controller and code generator have the most
resource consumption, and take approximately one third of the total. This result is acceptable
for the core controller, but the code generator wastes too much resources. The delay of the
core controller reading routine is the cause. The core controller receives an interrupt every 16
samples, but it can not instantly read all data from other modules, while those modules still
continue running. Therefore, all latched data must be ping-pong stored. It allows the core con-
troller to have enough time to read before the data is changed. The problem also happens in
other modules such as the carrier generator and data buffer. It leads to approximately double
increase of utilised flip-flops in each module. Comparing with the Namuru GPS L1 C/A digital
channel (Mumford et al., 2006)), the channel core consumes about double the resources. This
is only the utilisation resources for one channel. A conventional receiver usually has several to
a dozen of channels, especially for multi-GNSS, the requirement number of channels is much



Module 4-input LUTs Flip-flops
18 Kbit

RAM blocks
Occupied slices

Utilisation

resources ratio
Operating frequency

Code Generatot 286 687 1 472 0.334 IF sampling frequency

Carrier Generator 142 292 0 194 0.136 IF sampling frequency

Data buffer 35 144 0 82 0.058 IF sampling frequency

Time base 56 98 0 54 0.038 IF sampling frequency

IVT 55 58 0 49 0.034 IF sampling frequency

NIC 138 43 0 85 0.06 120 MHz

Core controller 498 179 0 487 0.34 120 MHz

Instruction Memory 0 0 1 0 0 120 MHz

Data memory 0 0 1 0 0 120 MHz

Total 1210 1501 3 1423 1.0

Namuru GPS L1 C/A

digital channel
788 856 0 685 0.48 100 MHz

Table 3: Channel core resource utilisation

higher. The consumed resources, therefore, grow significantly.

4.3.2 Power consumption

The baseband channel receiver custom core consists of several 1-bit operational units such as
and (AND), or (OR), exclusive-or (XOR), full-adder (FA), 2-1 multiplexer (MUX), flip-flop
(FF), distributed or block single port RAM and dual port RAM. The total power dissipated is
then approximately the sum of the average energy consumed per operation multiplied by the
total number of operations per second for all operational units. That is

Total Power = ∑
all operational unit

Energy
Operation

.
Total number of Operation

Second
(1)

The energy per operation of each unit and its relevant Xilinx Spartan 3 FPGA resource are
presented in Table. 4. The energy is estimated by the Xilinx XPower Analyser. Applying
Equation 1, the total power consumption of the proposed custom core when it processes various
GNSS signals is shown in Table. 5. It is clear that the IF sampling frequency plays an important
role in the power consumption of the custom core. When the IF frequency is small or slightly
increased such as for GPS L1 C/A, GALILEO E1 or BEIDOU B1I, the total consumed energy
is only slightly increased. In contrast, it is doubled, when the IF sampling rate is high, as for
GALILEO E5.

4.4 Processing speed constraint

The main drawback of a full programmable channel core is the processing speed constraint.
Although the core processes a block of 16 samples per time and the core controller is a 5 stage
pipeline (meaning that the throughput is one instruction per cycle), the speed limitation of the
core controller constrains the length of the acquisition and tracking program. The maximum
number of instructions can be calculated as

Maximum number of instruction =
Core clock speed * 16
IF sampling frequency

(2)

For instance, when the custom core is programmed to receive the GPS L1 C/A signal and the
IF sampling frequency is 5.714 MHz. The maximum core clock speed is 120 MHz (synthesise



Operational

Unit

Relevant FPGA

resources

Energy

(pJ)

AND/OR/XOR/FA/MUX 1 4-input LUT 0.475

FF 1 Flip-flop 0.432

SRL16 1 4-input LUT 1.541

16x1 Distributed

Single port RAM
1 4-input LUT 0.733

16x1 Distributed

Dual port RAM
2 4-input LUT 1.465

512x32 Block RAM
1 18-Kbit

block RAM
38.80

Table 4: Energy consumption
of operational units

Figure 9: Combination of custom core
and dedicated corelators

on Xilinx Spartan 3 FPGA), the maximum length of the acquisition of tracking program is
336 instructions. This is enough for acquisition but it requires a very short tracking algorithm.
Similarly, if the received signal is GPS L5 and IF sampling frequency is 40 MHz, the maximum
number of instructions is 76. This is only suitable for doing correlation and accumulation
and can not be enough for both acquisition and tracking. The constraint limits the innovation
of the custom channel core. When the acquisition and tracking cannot move down to each
channel core, the flexible configuration and re-programmability of the channel core has no more
advantages than a conventional digital channel.

In conclusion, the custom channel core is an innovation for multi-GNSS receiver design, but the
processing speed constraint and the high resource consumption limit and block the realisation
the custom core.

5 COMBINED DEDICATED CORRELATOR AND A CUSTOM CORE

A specific custom channel core is a very promising approach for applying multicore architec-
ture on multi-GNSS receiver as analysed in previous sections. However, the processing speed
constraint limits the ability of the custom channel core. The main factor leads to the constraint
is the correlation. The custom core has to repeat its correlation and accumulation every 16

Module
GPS L1 C/A GALILEO E1 BEIDOU B1I GALILEO E5

Operating

frequency

(MHz)

Power

consumption

(mW)

Operating

frequency

(MHz)

Power

consumption

(mW)

Operating

frequency

(MHz)

Power

consumption

(mW)

Operating

frequency

(MHz)

Power

consumption

(mW)

Code Generatot 5.714 1.22 8.194 1.75 16.368 3.49 100 21.32

Carrier Generator 5.714 0.46 8.194 0.66 16.368 1.32 100 8.09

Data buffer 5.714 0.18 8.194 0.26 16.368 0.53 100 3.22

Time base 5.714 0.17 8.194 0.24 16.368 0.47 100 2.90

IVT 5.714 0.13 8.194 0.18 16.368 0.36 100 2.20

NIC 120 4.52 120 4.52 120 4.52 120 4.52

Core controller 120 16.8 120 16.80 120 16.80 120 16.80

Instruction Memory 120 4.02 120 4.02 120 4.02 120 4.02

Data memory 120 4.02 120 4.02 120 4.02 120 4.02

Total 31.52 32.46 35.54 67.09

Table 5: Power consumption of custom core



samples to keep track of the incoming signal. If the correlation can independently process, the
core controller has more free time to do other tasks such as acquisition or tracking loop. The
conventional and commercial GNSS receiver is designed based on this idea. The architecture
combines several digital channels and a general purpose processor or a soft-core (Mumford
et al., 2006). Nevertheless, the design is specific to one desired GNSS signal or frontend and
can not be reused or reconfigured. Therefore, it requires designing a programmable correlator
that can be dynamically reconfigured by the core controller according to the GNSS signal or
frontend characteristic. Applying the following changes on the required modules mentioned in
Section. 2, the custom correlator illustrated in next section is proposed.

Code Generator: Replacing LFSRs by Code Counter and a code memory, which allows
storing and loading any GNSS spreading code.

Mixer: Implementing the mixers based on Xilinx SRL16 (XAPP465, 2005), so the core
controller can access and change mixer logic functions to make it suitable for any frontend
quantisation values.

Number of correlator taps and accumulation: Taking the superiority of the Interleav-
ing Passive Parallel Correlator (IPPC) versus the Active Parallel Correlator (APC)(Tran et al.,
2015), the custom IPPC circuit is implemented. It not only allows having a high number of cor-
relator taps, but also reduces significantly the utilisation of resources by combining accumulator
and block RAMs(detailed in next section).

Integration method: Combining a dedicated correlator and a custom core controller that
allows applying and integrating the three integration methods: coherent, non-coherent or differ-
ential because all of them can be software-implemented inside the core controller.

5.1 Programmable pipeline baseband circuit

Taking advantage of RAM-based design in comparison with register-based design (Tran et al.,
2015), this section proposes a custom channel core architecture that is illustrated in Figure. 9 and
its pipeline interleaved correlator as shown in Figure.10. The correlator consists of 7 pipeline
stages and a 32-tap interleaved Passive Parallel Correlator (Tran et al., 2015). All modules are
separated into pipeline stages so that there is no more than one memory access routine in each
stage. The delta delay time is also considered. The most time delayed component is the tree
adder. It contains 5 combination logic layers, and takes more than 13 nanoseconds to process
(estimated by Xilinx ISE 13.3 on Spartan 3 FPGA). Therefore, it is separated into 2 stages
(5th,6th stage) to fulfil the timing constrains.

The detailed architecture of the pipeline correlator is presented in (Tran et al., 2015), so it is not
mentioned here.

5.2 Operation and Programmability

The channel circuit has been implemented on Xilinx Spartan FPGA and it can operate at a high
clock speed: 160 MHz on Spartan 3. The conventional baseband circuits usually operate at the
low IF sampling frequencies as in Table 1. The proposed circuit, therefore, can be interleaved
to process 16 GPS L1 C/A channels or 8 BEIDOU B1I channels or 4 GALILEO E1 channels or
1 GPS L5/GALILEO E5 channel, respectively. The baseband operation and reconfigurability is
described as follows.

Clock Source Selection: The baseband circuit clock is selected through an external mul-
tiplexer. The multiplexer has 4 input clocks: 16 times, 8 times, 4 times and one time of the IF
sampling frequency. The Core Controller assigns the control signal to select the baseband clock



Figure 10: Pipeline interleaved baseband correlator

source based on the input signal.
Channel Selection: The channels are selected through the Channel Address bus controlled

by an external 4-bit counter. The counter is driven by the same clock source as the baseband.
Therefore, a new channel is selected to operate at each clock cycle. The routine repeats when
the counter overflows. The counter maximum (overflow) value is programmed by the Core
Controller, the baseband circuit, as a result, can configure as a variety of channels: 1 to 16
channels accorded to the desired GNSS signals.

Spreading Code Selection: According to received signal, the Core Controller download
the conformable spreading codes to CODE LOAD memory. The Channel Type signal is as-
signed to multiplex the allocation of the Channel Address and the Code Counter values to
make up the code memory address (n-bit Channel Address is n MSBs and m-bit Code Counter
value is m LSBs (n+m = 9)) The code memory, as a result, can be separated to store 16 GPS
L1 C/A 1023-bit code memory blocks (n=4, m=5), or 8 BEIDOU B1I 2046-bit code memory
blocks (n=3, m=6), or 4 GALILEO E1 4092-bit code memory blocks (n=2, m=7) or 1 GPS
L5/GALILEO E5 10230-bit code memory block(n=0,m=9).

Downsampling Frequency Selection: The frontend receivers have a variety of the IF sam-
pling frequencies, thus the DOWN SAMPLING module should have a flexible downsample rate
to fulfil the demodulation constrain. The 2-bit Shift Value control bus allows the downsample
rate is configured. The data output rate can be programmed as 1/2, 1/4, 1/8 or 1/16 of the input
data rate. Depending on the received GNSS spreading code rate and the IF sampling frequency,
one of the four optional values is selected.

Accumulator Combination: The hardware interleaving allows one 18-Kbit RAM block
to be shared to store multiple tap correlated values of various channels. The RAM block is
synthesised as 512x32 bit memory block. When one channel tap correlated value is calculated,
the conformable Channel Address (assigned as the 4 MSB memory address) and Tap Counter
(assigned as the 5 LSB memory address) values are combined to allocate the desired memory
row to store the correlated value. Consequently, the baseband accumulator can be configured to
accumulate correlated value of 1 to 16 channels, with each channel has 32 tap correlators.

Operation: Assuming that the received signal is GPS L1 C/A and the IF sampling fre-
quency is 5.714 MHz. The baseband circuit, therefore, can be programmed to operate as 16
interleaved channels. The Core Controller selects the clock source that is 16 times of the IF
sampling frequency (91.424 MHz) and sets the maximum channel counter value to 15. The
CODE COUNTER maximum value is set to 1023, and 16 different GPS L1 C/A spreading
codes are loaded to CODE LOAD memory. Besides that, the downsample rate of the DOWN
SAMPLING module is set to 1/2 because the GPS L1 C/A modulation is BPSK. Each chan-
nel, as a result, consists of 32 approximately half chip delayed correlation taps. Similarly, the



Module
4-input

LUTs
FF SRL16

Distributed

Single port

RAM

Distributed

dual port

RAM

18 Kbit

RAM

blocks

Occupied

slices

Utilisation

resources

ratio

Operating

frequency

Code NCO 69 0 0 42 64 0 88 0.074 f clk

Code Counter 55 0 0 29 0 0 44 0.037 f clk

Carrier Generator 109 6 84 64 0 135 0.113 f clk

Sub-carrier

Generator
0 0 4 0 0 0 2 0.002 f clk

Code Load 23 0 0 0 0 1 12 0.010 f clk

Carrier Mixer 0 0 32 0 0 0 16 0.013 f clk

Code Mixer 0 0 2 0 0 0 1 0.001 f clk

Down sampling 92 0 0 26 0 0 62 0.052 f clk

I&Q tap delay 2 0 0 256 0 0 129 0.108 f clk/k

Code tap delay 0 0 0 0 128 0 64 0.054 f clk/k

I&Q Correlator 256 0 0 0 0 0 128 0.108 f clk/k

Tap counter 15 0 0 9 2 0 16 0.013 f clk/k

Tree adder 308 56 0 0 0 0 192 0.161 f clk/k

Accumulator 232 22 0 0 0 4 130 0.109 f clk/k

Pipeline register 1 0 55 0 0 0 0 23 0.019 f clk

Pipeline register 2 0 296 0 0 0 0 148 0.124 f clk/k

Total 1159 430 44 446 258 5 1190 1.0

Table 6: Custom pipeline programmable correlator utilisation resources

received signal is GALILEO E1, the sampling frequency is 16.367 MHz. The baseband cir-
cuit now is configured to operate as 4 interleaved channels. The Core Controller selects the 4
time IF sampling frequency (65.468 MHz) clock source and sets the maximum channel counter
value to 3. The CODE COUNTER maximum value is set to 4092, and 4 different GALILEO
E1 spreading codes are loaded to CODE LOAD memory. Moreover, the downsample rate of
the DOWN SAMPLING module is set to 1/4 because of the GALILEO E1 MBOC modulation.
Each interleaved channel now contains 32 approximately quarter chip delayed correlation taps

Seamless Dimension Acquisition Search: Normally at acquisition stage, the correlator
has to search in three dimension space (Carrier Frequency (plus Doppler shift), code chip delay
(time) and satellites PRN) to look for the visible satellites. It usually takes a long time to acquire
one satellite. Although the proposed correlator development is based on hardware time inter-
leaving, each channel still can be individually configured. This allows implementing a seamless
Frequency-Time-PRN search. For example, all interleaved channels can be programmed to
search for the same satellite (same PRN) but different frequency. By doing that, the acquisition
time reduces considerably, especially for warm or hot start when the almanac data is available
(visible satellites are known). Furthermore, the extremely low resource utilisation (detailed in
the next section) permits synthesising several proposed correlators inside one chip. The combi-
nation of multiple proposed correlator provides many flexible methods to implement a powerful
search engine.

5.3 Resource and Power Consumption

The proposed pipeline correlator is implemented on Xilinx Spartan-3 FPGA. Applying the
RAM-based design and time multiplexing technique, all the registers are replaced by the dis-
tributed RAM. The pipeline correlator circuit can be configured to process 16 GPS L1 C/A, 8



Baseband correlator

(n channels)
4-input LUTs Flip-flops

18 Kbit

RAM blocks
Occupied slices

Utilisation

resources ratio

16 GPS L1 C/A 36160 36672 0 36416 1

8 BEIDOU B1I 18088 18352 0 18220 0.5

4 GALILEO E1

(distributed RAM)
9848 9136 0 9492 0.26

4 GALILEO E1

(block RAM)
9128 9136 4 9132 0.25

1 GPS L5 2264 2300 0 2282 0.063

Pipeline custom core 2051 430 5 1267 0.035

Table 7: Resource comparison

BEIDOU B1I, 4 GALILEO E1 or 1 GPS L5/GALILEO E5 channels (each channel supports
32 parallel code tap search), but it consumes as many resources as one custom channel core
presented in Section 4. The detailed utilisation resources of each module is shown in Table. 6.

Similar digital channels that perform the same functionality as the pipeline custom correla-
tor are also implemented. All of these channels are designed to have 32 APC half-chip or
quarter-chip delayed correlator taps. The comparison results shown in Table. 7 reveal that the
custom pipeline core is not only flexibly configured but also has significantly lower utilisation
resources. However, the power consumption of the pipeline correlator is not reduced compara-
bly with the low resource consumption. The main reason is that the pipeline correlator has to
run at high clock speed to adapt to the time interleaving process among channels. Although the
power consumption is not as low as projected, it is still reduced 52% to 66% compare to the
corresponding conventional digital correlator as shown in Figure. 11. Moreover, the consumed
power is decreased from 52% to 86% in comparison with the consumption of the equivalent
custom channel core proposed in Section 4.

Figure 11: Power consumption comparison



6 CONCLUSION

A design for new modern GNSS signals leads to the requirement of a reconfigurable architec-
ture for multi-GNSS receiver. Multicore is a promising approach for the receiver. However, the
general purpose processor/core should be replaced by a custom specific core to reduce the util-
isation resources and power consumption. Among multicore parallel architectures, the channel
parallelism is the most flexible architecture, it allows integrating not only among systems but
also between various frequency bands of the same or different GNSS systems. The two custom
channel core architectures are proposed in the paper. The fully programmable channel core is
more flexible, however the limitation of the processing constraint and high power and resource
consumption is the main drawback of the architecture. A combination of a pipeline custom
correlator and a custom core controller is a much more promising design. Not only are the flex-
ibility and programmability fulfilled, but the resource utilisation is also considerably reduced
(as shown in Table. 7) and the power consumption is noticeably reduced comparing to other
similar architectures.
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